Oracle database 12c¢ In-Memory option: Overview

Introduction

Oracle has introduced industry breakthrough enhancement in patch set 1 of existing database 12c,
called In-Memory.

Traditionally, Oracle stores data in tables in form of rows. This new feature will allow to store data in
memory in columnar format.

Storing data in columnar format give multiple times performance gain for DSS systems where you tend
to retrieve fewer columns with multiple rows and this performance enhancement is further multiplied
when you retrieve that data from memory instead of slower disks.

High level steps

It's one of the easiest features to implement. You can implement it in three steps.

1. Define parameter INMEMORY_SIZE in MB/GB.

a) Editinit.ora file

b) Include INMEMORY_SIZE=nnn.. GB

c) Restart database

d) Validate memory allocated to InMemory:
Instance startup messages will show you additional line for In-Memory. If you miss that then
run below command on sqlplus
Show parameter inmemory;

2. Set tables attribute to InMemory.
a) Alter table hr.people inmemory;

3. Access the table or restart database. Tables will be populated in In-Memory column store only

when they will be accessed first time or database is restarted.

a) Select count(*) from hr.people

b) If you do not want to run count then restart of database will also populate table in In-
Memory column store.

c) Monitor the progress of InMemory population and then it is ready to fly.
SELECT owner, segment_name, populate_status FROM vSim_segments;
SELECT owner, segment_name name,populate_status ,bytes_not_populated FROM
vSim_segments;

Example for inmemory option

1. Download scripts in zip file from article home page

1.1 run create_people.sql to create table

1.2 run dataload_0724.sql to load 1 mil rows

1.3 If you want to add more rows you can run bulk0724.sgl.You can edit this file for data volume
you want to load

1.4 At the end run CR_Index.sql to create index on table

2. Define parameter INMEMORY_SIZE in MB/GB in init.ora file and validate it after instance startup
or during startup

3. Check In-Memory attribute of tables
SQL> column TABLE_NAME format a40
SQL> column CACHE format a5
SQL> column INMEMORY_PRIORITY format a25
SQL> column INMEMORY format a25
SQL> set linesize120
SQL> select TABLE_ NAME, cache, INMEMORY_PRIORITY, INMEMORY from user_tables
where table_name like 'PEO%';

TABLE_NAME CACHE INMEMORY_PRIORITY INMEMORY
PEOPLE N DISABLED
PEOPLE2 N DISABLED
PEOPLE3 N DISABLED

4. Run asample query without In-Memory

SQL> select distinct count (last_name) from anuj.people2 where sal between 100000
and 100100 ;

COUNT(LAST_NAME)

Execution Plan

Plan hash value: 3468796632

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	SELECT STATEMENT		1	30	409 (0)	00:00:01
1	SORT AGGREGATE		1	30}		

|* 2| TABLE ACCESS FULL| PEOPLE2| 2| 60| 409 (0)| 00:00:01 |

5. Change tables attribute to inmemory and validate
SQL> alter table anuj.people2 inmemory;

Table altered.

SQL> select TABLE_NAME,cache,INMEMORY_PRIORITY,INMEMORY from user_tables
where table_name like 'PEO%";

TABLE_NAME CACHE INMEMORY_PRIORITY INMEMORY

PEOPLE2 N NONE ENABLED
PEOPLE N DISABLED
PEOPLE3 N DISABLED

6. Run asample query to populate table in In-memory column store
SQL> select /*+ full(ppl) noparallel (ppl) */ count(*) from anuj.people2 ppl;

COUNT(*)

100000
7. Runsample query to see In-Memory operation
SQL> set autotrace on
SQL> select distinct count(last_name) from anuj.people2 where sal between 100000

and 100100;
COUNT(LAST_NAME)

Execution Plan

Plan hash value: 3468796632

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	SELECT STATEMENT		1	30	409 (0)	00:00:01
1	SORT AGGREGATE		1] 30]			

|* 2| TABLE ACCESS INMEMORY FULL| PEOPLE2 | 2| 60| 409 (0)| 00:00:01 |

8. Run below command to take table out of In-Memory column store.
SQL> set autotrace off
SQL> alter table anuj.people2 no inmemory;
9. Runsample query to validate no inmemory operation
SQL> set autotrace on
SQL> select distinct count(last_name) from anuj.people2 where sal between 100000
and 100100 ;

COUNT(LAST_NAME)

Execution Plan

Plan hash value: 3468796632

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	SELECT STATEMENT		1	30	409 (0)	00:00:01
1	SORT AGGREGATE		1] 30]			

|* 2| TABLE ACCESS FULL| PEOPLE2| 2| 60| 409 (0)| 00:00:01 |

Other In-Memory Parameters:

Inmemory_query You can use this parameter to set in-memory attribute for queries on the tables at
session or system level.

Inmemory_clause_default You can use this parameter to to define which table will go in In-memory.
If you want to put all the tables to in-memory then set INMEORY_CLAUSE_DEFAULT to ‘INMEMORY’. If
you want certain tables to be in-memory then you can specify here and they will be populated with
instance startup. Alternatively you can set this parameter a blank string that means tables will be
populated in-memory by first setting in-memory attribute using alter table and then explicitly accessing
it.

Inmemory_force You can set this parameter to either force all tables in in-memory or no tables in in-
memory. Possible values for this parameter is “ON” and “OFF”. If it is set to “ON” then you do not need
to use alter command to change in-memory attribute.

Stay tuned for next article on In-Memory. Thanks for reading!

